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0 Reminders: Basics of Single-Variable Analysis

These linear algebra notes will focus on working in multi-dimensional spaces, i.e. equations in
multiple variables. As background, we here review the basics of single-variable analysis. In practice,
on a computer, all variables are discrete, so it will be helpful to understand the correspondence
between continuous functions and discrete variables, e.g. integrals can be thought of as a limit of
a discrete sum, and derivatives as the limit of a discrete difference.

Recall that the sum symbol
∑N

i=0 xi means to sum the values of xi from i = 0 to i = N , e.g.∑2
i=0 xi = x0 + x1 + x2.

0.1 Derivatives are Differences, Integrals are Sums, and the Fundamental The-
orem of Calculus

Derivatives are differences: The derivative of a function f at a point x is the slope of the
function at the point. It is defined as a limit of a difference between the values of f(x) at two
points separated by ∆x, divided by ∆x:

df(x)

dx
= lim

∆x→0

f(x+ ∆x)− f(x)

∆x
(0.1)

The second derivative is the derivative of the first derivative, d2f(x)
dx2

= d
dx

df(x)
dx . Similarly the

third derivative is the derivative of the 2nd derivative, etc; the nth derivative is written dnf(x)
dxn or

as f
′...′ where there are n primes for the nth derivative, e.g. the first, second, and third derivatives

of f(x) can be written f ′(x), f ′′(x), f ′′′(x) respectively. The nth derivative can also be written
f (n)(x).

Some commonly encountered derivatives include (below, log(x) means the natural log (log in
base e), sometimes written ln(x)):

dxn

dx
= nxn−1 (0.2)

dex

dx
= ex (0.3)

d log(x)

dx
=

1

x
(0.4)

d cos(x)

dx
= − sin(x) (0.5)

d sin(x)

dx
= cos(x) (0.6)
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These example derivatives are derived in Section 0.4 below.
Integrals are sums: Recall that, for a function f(x) of a variable x, the definite integral from
A to B is the area under the curve defined by f(x) from A to B. This is defined as a limit of a
discrete sum: ∫ B

A
dx f(x) ≡ lim

∆x→0

Round((B−A)/∆x)∑
i=0

f(A+ i∆x)∆x (0.7)

Note that there are (B−A)/∆x values in the sum, which we round to the nearest integer, and they
are weighted by ∆x; thus the weighting times the number of values in the sum remains constant,
allowing a limit to exist.

If
∫ B
A dx f(x) = F (B) − F (A) for some function F (x), then the indefinite integral of f(x) is

defined as
∫
dx f(x) = F (x) +C, where C is an arbitrary constant. (Note that if F (x) satisfies the

definition of the indefinite integral, so too does F (x) + C for arbitrary C.)
Some commonly encountered integrals (expressed here as indefinite integrals, but omitting the

constant C) include: ∫
dxxn =

xn+1

n+ 1
(n 6= −1) (0.8)∫

dx
1

x
= log(x) (0.9)∫

dx ex = ex (0.10)∫
dx cos(x) = sin(x) (0.11)∫
dx sin(x) = − cos(x) (0.12)

(0.13)

Note that in each case the derivative of the outcome on the right gives the integrand, which follows
from the fundamental theorem of calculus, to which we now turn.
The fundamental theorem of calculus: This states that the derivative and integral are inverses
of each other in the following sense: if F (x) is the indefinite integral of f(x), then f(x) = dF (x)

dx .
This can alternately be stated that the integral of the derivative of a function F is that function:∫ B
A dx dF (x)

dx = F (B)− F (A), or
∫
dx dF (x)

dx = F (x) + C, where C is an arbitrary constant.
This can be seen from the definitions of integrals and derivatives:∫ B

A
dx

dF (x)

dx
= lim

∆x→0

Round((B−A)/∆x)∑
i=0

dF (A+ i∆x)

dx
∆x (0.14)

= lim
∆x→0

lim
∆x′→0

Round((B−A)/∆x)∑
i=0

F (A+ i∆x+ ∆x′)− F (A+ i∆x)

∆x′
∆x (0.15)

We can take the limit keeping ∆x = ∆x′, which then gives

= lim
∆x→0

Round((B−A)/∆x)∑
i=0

F (A+ (i+ 1)∆x)− F (A+ i∆x) (0.16)

= lim
∆x→0

F

(
A+

(
Round

(
B −A

∆x

)
+ 1

)
∆x

)
− F (A+ 0 ∗∆x) (0.17)

= F (B)− F (A) (0.18)
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0.2 Taylor Series

Functions that are sufficiently well behaved can have their value near some value of x approximated
by a Taylor series, which is a series in terms of the function’s derivative:1

f(x+ ε) = f(x) + f ′(x)ε+
1

2!
f ′′(x)ε2 +

1

3!
f ′′′(x)ε3 + . . . =

∞∑
0

f (n)(x)

n!
εn (0.21)

Some specific examples of expansions about x = 0 that are frequently used are:

1

1− x
= 1 + x+ x2 + x3 + . . . (convergent for |x| < 1) (0.22)

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + . . . (convergent for |x| < 1) (0.23)

log(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + . . . (convergent for |x| < 1) (0.24)

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . (convergent for all x) (0.25)

cos(x) = 1− x2

2!
+
x4

4!
− . . . (convergent for all x) (0.26)

sin(x) = x− x3

3!
+
x5

5!
− . . . (convergent for all x) (0.27)

0.3 The Chain Rule

When a function f(y) depends on y, and y in turn depends on a second variable x, f can be
differentiated with respect to x using the chain rule:2

df

dx
=
df

dy

dy

dx
(0.28)

If f depends on multiple variables yi(x), i = 1, . . . , n, then one can sum over the dependence on
each variable:

df

dx
=

df

dy1

dy1

dx
+

df

dy2

dy2

dx
+ . . . =

N∑
i=1

df

dyi

dyi
dx

(0.29)

1The form of the Taylor series can be derived as follows. Suppose there is an expansion

f(x+ ε) = a0 + a1ε+ a2ε
2 + . . . =

∞∑
i=0

aiε
i (0.19)

Then by setting ε to zero, one finds a0 = f(x). Taking one derivative with respect to ε gives

f ′(x+ ε) = a1 + 2a2ε+ 3a3ε
2 + . . . =

∞∑
i=1

iaiε
i−1 (0.20)

Setting ε to zero shows that a1 = f ′(x). Repeating this process gives f ′′(x) = 2a2, f ′′′(x) = (3·2)a3, f4(x) = (4·3·2)a4,
etc., i.e. f (n)(x) = (n!)an or an = f (n)(x)/n!. This does not tell when a Taylor series will converge, but tells the
form it must take when it is convergent.

2The chain rule can be derived as follows. Given a function f(y(x)), then df
dx

= limε→0
f(y(x+ε))−f(y(x))

ε
. Now

expanding y(x+ ε) in a Taylor series gives df
dx

= limε→0
f(y(x)+y′(x)ε+O(ε2))−f(y(x))

ε
. (Here, O(ε2) means terms with ε

raised to the power 2 or higher; for a more rigorous definition see https://en.wikipedia.org/wiki/Big_O_notation).

Expanding f in a Taylor series then gives df
dx

= limε→0
f(y(x))+f ′(y(x))y′(x)ε+O(ε2)−f(y(x))

ε
= f ′(y(x))y′(x).
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The chain rule allows us to generalize the example derivatives given above. For example,

dekx

dx
=

dekx

d(kx)

d(kx)

dx
= kekx (0.30)

d log(kx)

dx
=
d log(kx)

d(kx)

d(kx)

dx
= k

1

kx
=

1

x
(0.31)

(which can also be seen from log (kx) = log(k) + log(x))

d
√

1 + kx

dx
=
d(1 + kx)0.5

dx
=
d(1 + kx)0.5

d(1 + kx)

d(1 + kx)

dx
= 0.5(1 + kx)−0.5k =

k

2
√

1 + kx
(0.32)

etc.
The chain rule also gives us the product rule:

d(f(x)g(x))

dx
=
d(f(x)g(x))

df(x)

df(x)

dx
+
d(f(x)g(x))

dg(x)

dg(x)

dx
= f ′(x)g(x) + f(x)g′(x) (0.33)

Letting g(x) = 1
h(x) , and noting d(1/h(x))

dx = d(1/h(x))
d(h(x))

dh(x)
dx = − h′(x)

h(x)2
, we obtain the rule for differen-

tiating the division of two functions

d
(
f(x)
h(x)

)
dx

=
f ′(x)

h(x)
− f(x)

h′(x)

h(x)2
=
f ′(x)h(x)− f(x)h′(x)

h(x)2
(0.34)

The chain rule is used in the backpropagation algorithm for neural networks. Suppose an error

function E depends on the activations a
(n)
i of the units in the nth (top) layer, where i labels the

units, and these activities depend in turn on the activities a
(n−1)
i in the previous layer and the

weights w
(n)
ij (representing the weight from the jth unit of layer n − 1 to the ith unit of layer n).

Then we can determine how the error will change by modifying a weight w
(n)
ij by writing

dE

dw
(n)
ij

=
dE

da
(n)
i

da
(n)
i

dw
(n)
ij

(0.35)

One can keep concatenating derivatives to determine how weights in lower layers should change, for

example to determine how a change in a weight w
(n−1)
ij from layer n− 2 to layer n− 1 will change

the error, we write

dE

dw
(n−1)
ij

=
∑
p

dE

da
(n)
p

da
(n)
p

da
(n−1)
i

da
(n−1)
i

dw
(n−1)
ij

(0.36)

0.4 Deriving the Example Derivatives, and the Number e

Although we wrote down det

dt = et above, it is useful to see precisely why this is true. Note first that

the function zt for some number z has the derivative dzt

dt = limε→0
zt+ε−zt

ε = limε→0 z
t
(
zε−1
ε

)
=

zt limε→0
zε−1
ε . So for any z, dzt

dt = k(z)zt ∝ zt, with the proportionality constant given by k(z) =
limε→0

zε−1
ε . It’s easy to see that k(1) = 0 and that k(z) is an increasing function of z. For which

value of z is k(z) = 1, so that f(t) = zt satisfies df(t)
dt = f(t)?

To answer, recall the number e, Euler’s number, which has the value 2.71828 . . .. It is the
solution to the compound interest problem: suppose you pay back a loan with 100% interest after
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1 year, so that at the end of the year you pay (1 + 1) times the loan amount. You could instead
accrue 50% interest every six months, so you would owe (1 + 1

2)2 times the loan amount. You could
break it up into finer and finer bins, adding 1/N in interest N times. Taking the limit as N goes
to infinity, this limiting amount of principle plus interest is e:

e = lim
N→∞

(
1 +

1

N

)N
(0.37)

Thus et = limN→∞(1 + 1
N )Nt and by a change of variables, p = Nt, we can write this as et =

limp→∞(1 + t
p)p. So eε = limp→∞(1 + ε

p)p. If this limit exists, then the infinite sequence of integers
going to infinity has to give the same answer, so we can consider limp→∞,p integer(1+ ε

p)p. For integer

p, it is easy to expand the polynomial: (1 + ε
p)p = 1 +p εp +O(ε2) = 1 + ε+O(ε2) (here O(ε2) means

terms involving ε raised to a power 2 or higher). This shows that for the number e, k(e) = 1, and

so et is the function f(t) that is its own derivative, df(t)
dt = f(t).

Note that, knowing the derivative of et and thus, by the chain rule, that of eεt, we can write the

Taylor series eεt = 1+εt+O(ε2). This allows us to evaluate k(z) = limε→0
zε−1
ε = limε→0

eε log(z)−1
ε =

limε→0
1+ε log(z)+O(ε2)−1

ε = log(z), that is, dzt

dt = log(z)zt.
The other example derivatives of Section 0.1 can be derived as follows. The derivative of the log

can be found by writing elog(x) = x; differentiating both sides with respect to x and using the chain
rule on the left gives d log(x)

dx elog(x) = 1, or d log(x)
dx = 1

x . Then to find the derivative of xn, we write

xn = en log(x). We differentiate both sides and apply the chain rule to find dxn

dx = dn log(x)
dx en log(x) =

n
xx

n = nxn−1.

To find the derivative of cos(x), we write d cos(x)
dx = limε→0

cos(x+ε)−cos(x)
ε . We can use a trigono-

metric identity to write cos(x+ε) = cos(x) cos(ε)−sin(x) sin(ε), so d cos(x)
dx = limε→0− cos(x)1−cos(ε)

ε −
sin(x) sin(ε)

ε . Here we have to rely on knowing limε→0
sin(ε)
ε = 1 and limε→0

1−cos(ε)
ε = 0, which

can be established by purely geometric analysis (but can also be seen to be true, circularly, if
we already know the derivatives of cos and sin so that we can use their Taylor series expan-
sion). This gives d cos(x)

dx = − sin(x). Similarly, d sin(x)
dx = limε→0

sin(x+ε)−sin(x)
ε , and sin(x + ε) =

cos(x) sin(ε) + sin(x) cos(ε), so d sin(x)
dx = limε→0− sin(x)1−cos(ε)

ε + cos(x) sin(ε)
ε = cos(x).

0.5 First-Order Linear Differential Equations of One Variable

A first-order differential equation is one that involves only first derivatives, i.e. no higher derivatives.
A linear differential equation is one in which the dependencies on the unknown function and its
derivatives are linear. Thus a first-order linear differential equation has the form f ′(t) = a(t)f(t) +
b(t) (we switch to using the variable t instead of x, because it is more intuitive to think of these
equations as describing evolution in time rather than in space). If a(t) = 0, the equation can
be solved by integrating both sides to obtain f(t) =

∫
dt b(t) + C. We will be interested in this

equation with a(t) 6= 0. (Some terminology: if there is no explicit time dependence, meaning that
a and b are both time-independent constants, the equation is called autonomous; otherwise, it is
non-autonomous. If b(t) = 0, so that all the terms in the equation are linear in f or f ′, it is
called a homogeneous linear equation; otherwise, it is non-homogeneous. For nonlinear differential
equations, the definition of homogeneous is a bit more complicated, see https://en.wikipedia.

org/wiki/Homogeneous_differential_equation.)
The simplest such equation is autonomous and homogeneous:

df

dt
= ±f(t) (0.38)
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This has the solution
f(t) = f(0)e±t (0.39)

where the sign of the ± in the solution is the same as that in the differential equation, and f(0)
is the value of f at the initial time t = 0 (here and below, any arbitrary initial time t0 can be
substituted for 0, with the “t− 0” dependence (here, in et = et−0) replaced by t− t0).

Using the chain rule to obtain deat

dt = aeat, we see that the equation

df

dt
= af(t) (0.40)

has the solution3

f(t) = f(0)eat (0.41)

If we let a depend on t, the equation
df

dt
= a(t)f(t) (0.42)

has solution4

f(t) = f(0)e
∫ t
0 dt
′a(t′) (0.47)

That this is the solution to Eq. 0.42 can be seen by the chain rule:

d
(
f(0)e

∫ t
0 dt
′a(t′)

)
dt

= f(0)
d
(
e
∫ t
0 dt
′a(t′)

)
d
(∫ t

0 dt
′a(t′)

) d
(∫ t

0 dt
′a(t′)

)
dt

= f(t)
d
(∫ t

0 dt
′a(t′)

)
dt

= a(t)f(t) (0.48)

To evaluate the last derivative, note that adding ε to t just adds a(t)ε to the value of the integral,
to lowest order in ε, so the derivative (value of function at t + ε minus value at t, divided by ε) is
just a(t). That is, differentiating an integral with respect to its upper limit (here, t) just produces
the integrand evaluated at the upper limit (here, a(t)).

Finally, we consider the inhomogeneous case, meaning that b(t) 6= 0. First, we consider the
autonomous case, in which both a and b are constants:

df

dt
= af(t) + b (0.49)

3If time 0 is replaced by an initial time t0, the solution in Eq. 0.41 can be written f(t0)ea(t−t0) (note that eat was

implicitly ea(t−0)) and that in Eq. 0.47 can be written f(t0)e
∫ t
t0
dt′a(t′)

.
4This can be derived by proceeding from Eq. 0.42 to write

df

f(t)
= a(t)dt (0.43)∫ f(t)

f(0)

df

f
=

∫ t

0

dt′ a(t′) (0.44)

log(f(t)) − log(f(0)) =

∫ t

0

dt′ a(t′) (0.45)

f(t)/f(0) = e
∫ t
0 dt′ a(t′) (0.46)

This is an example of the method of separation of variables, which can be used to solve any linear homogeneous
equation: all the terms involving f are on one side of the equation with df , and all the terms depending on t (except
f(t)) are on the right side with dt, allowing each side to be integrated.
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We can see that this equation has a fixed point (meaning a point where df
dt = 0) where f(t) =

−b/a ≡ fFP . Then the solution is5

f(t) = f(0)eat + fFP (1− eat) = fFP + eat (f(0)− fFP ) (0.50)

as can be checked by taking the derivative df
dt . For a < 0, this can be understood as the initial

condition exponentially decaying away while the system exponentially decays from 0 to the final
condition (the fixed point), or as the difference between the initial and final conditions exponentially
decaying away. For a > 0, this represents exponential growth away from the fixed point.

Next, we consider dependence of b on t,

df

dt
= af(t) + b(t) (0.51)

In this case the solution can be written6

f(t) = f(0)eat +

∫ t

0
dt′ ea(t−t′)b(t′) (0.52)

This can again be seen by differentiating. We have to note that the derivative of the integral with
respect to t gives two terms: (1) differentiating with respect to the upper limit t gives the integrand
evaluated at t′ = t, which is b(t); (2) differentiating with respect to the t in the exponential brings
down a factor of a, that is, it gives the integral multiplied by a. It is also worth checking that when
b(t) is constant, b(t) = b, this gives the solution in Eq. 0.50. Note that the solution in Eq. 0.52 can
be intuitively understood as b(t′)dt′ providing a new source or initial condition at time t′, which
decays away exponentially with increasing time (it is multiplied by ea(t−t′)); and all of these decayed
sources are added up (integrated), along with adding the decayed initial condition f(0), to give the
current state.

Finally, we consider the case in which all elements are time-dependent:

df

dt
= a(t)f(t) + b(t) (0.53)

Then the solution is7

f(t) = f(0)e
∫ t
0 dt
′a(t′) +

∫ t

0
dt′ e

∫ t
t′ dq a(q)b(t′) (0.54)

Again, this can be verified by differentiating with respect to t: the derivatives of the integrals in
the exponentials just multiply each term by a(t); while the derivative of the outer integral gives
the integrand at t′ = t, which is b(t). As before, it is useful to verify that making a(q) constant,
a(q) = a, reduces this solution to that of Eq. 0.52.

5For a derivation for time-dependent b, see footnote 6; the same derivation gives Eq. 0.50 when b is constant.
6The solution can be derived as follows. We know the homogeneous solution is proportional to eat. The trick now

is to guess a solution of the form f(t) = eatg(t). Taking the derivative gives d
dt
f(t) = af(t) + eat d

dt
g(t). Matching

this to d
dt
f(t) = af(t) + b(t) yields d

dt
g(t) = e−atb(t); integration then gives g(t) =

∫ t
0
dt′ e−at

′
b(t′) + g(0). Setting

t = 0 in f(t) = eatg(t) gives g(0) = f(0). Putting this all together gives f(t) =
∫ t
0
dt′ ea(t−t)

′
b(t′) + eatf(0), which is

Eq. 0.52.
7The solution can be derived much as in footnote 6. We know the homogeneous solution is proportional to

e
∫ t
0 dt′ a(t′). We guess a solution of the form f(t) = e

∫ t
0 dt′ a(t′)g(t); note that taking t = 0 then gives f(0) = g(0).

Taking the derivative gives d
dt
f(t) = a(t)f(t) + e

∫ t
0 dt′ a(t′) d

dt
g(t). Matching this to d

dt
f(t) = a(t)f(t) + b(t) yields

d
dt
g(t) = e−

∫ t
0 dt′ a(t′)b(t); integration then gives g(t) =

∫ t
0
dt′ e−

∫ t′
0 dq a(q)b(t′) + g(0). Putting this all together, using

g(0) = f(0), gives f(t) = e
∫ t
0 dt′ a(t′)

(∫ t
0
dt′ e−

∫ t′
0 dq a(q)b(t′) + f(0)

)
= f(0)e

∫ t
0 dt′ a(t′) +

∫ t
0
dt′ e

∫ t
t′ dq a(q)b(t′), which

is Eq. 0.54.
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